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Abstract: Watson-Crick finite automata were inspired by formal language theory, finite states machines and some 
ingredients from DNA computing such as working with molecules as double stranded complementary strings. Here, we 
define different kinds of regular reversibility in this model. Mainly, we will explore regular reversibility in the upper 
(lower) strand and in the double strand. 
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I. INTRODUCTION 

Watson-Crick finite automaton (WKFA) [1] is a 
good example of how DNA biological properties can be 
adapted to propose computation models in the 
framework of DNA computing. A recent survey on 
WKFA has been published in [2]. The WKFA model 
works with double strings inspired by double-stranded 
molecules with a complementary relation between 
symbols (here, inspired by classical complementary 
relation between nucleotides A-T and C-G). Different 
restrictions over the model have been proposed, mainly 
devoted to restrict the number of final states (i.e., all 
final and stateless WKFA) and the way of processing 
the upper and lower string (i.e., 1-limited and simple 
WKFA). Here we propose a different characterization of 
the model based on a classical concept of formal 
language theory such as regular reversibility. 

Reversible languages were introduced by Angluin 
[3] as a subclass of regular languages. In her work, 
Angluin showed that they form an infinite hierarchy 
(namely, k-reversible languages are k+1- reversible 
ones) and she proposed an efficient method to identify 
any k-reversible language from samples of it.  

Here, we will introduce regular reversibility in 
different ways. First, we will introduce a representation 
theorem for languages accepted by WKFA, which 
allows us to study WKFA through linear and even linear 
languages. Then, we will study two possibilities of 
defining reversibility: in the upper (lower) strand and in 
the double strand. Finally, we will give some guidelines 
for future works. 

II. BASIC CONCEPTS AND NOTATION 
In this section we will introduce basic concepts 

from formal language theory according to [4] and 
[5] and from DNA computing according to [6].  

1.  Formal Language Theory 
An alphabet Σ is a finite nonempty set of 

elements named symbols. A string defined over Σ is 
a finite ordered sequence of symbols from Σ. The 
infinite set of all the strings defined over Σ will be 
denoted by Σ*. Given a string x ∈ Σ* we will denote 
its length by |x|. The empty string will be denoted by 
λ and Σ+ will denote Σ*-{λ}. Given a string x we 
will denote by xr the reversal string of x. A language 
L defined over Σ is a set of strings from Σ.  

A grammar is a construct G = (N,Σ,P,S) where N 
and Σ are the alphabets of auxiliary and terminal 
symbols with N ∩ Σ = ∅, S ∈ N is the axiom of the 
grammar and P is a finite set of productions in the 
form α→β. The language of the grammar is denoted 
by L(G) and it is the set of terminal strings that can 
be obtained from S by applying symbol substitutions 
according to P. Formally, w1⇒G w2 if w1 = uαv, w2 = 
uβv and α→β ∈ P. We will denote by ⇒*G the 
reflexive and transitive closure of ⇒G . 

We will say that a grammar G = (N,Σ,P,S) is  
right linear (regular) if every production in P is in 
the form A→uB or A→w with A,B ∈ N and u,w ∈ 
Σ*. The class of languages generated by right linear 
grammars coincides with the class of regular 
languages and will be denoted by REG. We will say 
that a grammar G = (N,Σ,P,S) is linear if every 
production in P is in the form A→uBv or A→w with 
A,B ∈ N and u,v,w ∈ Σ*. The class of languages 
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generated by linear grammars will be denoted by 
LIN. We will say that a grammar G = (N,Σ,P,S) is  
even linear if every production in P is in the form 
A→uBv or A→w with A,B ∈ N, u,v,w ∈ Σ* and 
|u|=|v|. The class of languages generated by even 
linear grammars will be denoted by ELIN. A well 
known result from formal language theory is the 
inclusions REG ⊂ ELIN ⊂ LIN. 

A finite automaton (FA) is defined by the tuple 
A=(Q,Σ,δ,I,F), where Q is a finite set of states, Σ is 
an input alphabet, I ⊆ Q is a set of initial states, F ⊆ 
Q is a set of final states and δ:Q×(Σ∪{λ})→P(Q) is 
a transition function where P(Q) denotes the power 
set of Q, that is the set of all possible subsets of Q. 
The automaton accepts an input string if there exist a 
sequence of transitions, according to δ, such that it 
begins in the initial state and, after analyzing the 
string, it ends in a final state. The language accepted 
by a finite automaton A is defined as the set of 
strings that it accepts and it is denoted by L(A). A 
particular case of finite automaton is the 
deterministic one where the transition function is 
defined as δ:Q×Σ→Q and the set I is composed by 
an unique state. Given any finite automaton 
A=(Q,Σ,δ,I,F), we will define the reverse automaton 
of A, and we will denote it by Ar, as the tuple 
Ar=(Q,Σ,δr,F,I) where δr(q,a)={p∈Q : q ∈δ(p,a)}. 

A homomorphism h is defined as a mapping h: 
Σ→Γ* where Σ and Γ are alphabets. We can extend 
the definition of homomorphism over strings as 
h(λ)=λ and h(ax) = h(a) h(x) with a ∈Σ and x ∈ Σ*. 
Finally, the homomorphism over a language L ⊆ Σ* 
is defined as h(L) = { h(x) : x ∈ L }. 

2.  Regular reversible languages 
Reversible languages were proposed by D. 

Angluin in [3]. There, she proposed an efficient 
method to identify these languages from samples of 
them. In addition, she studied different 
characterizations and relations between the k-
reversible language classes. Here we will introduce 
some concepts and definitions proposed in her work. 

We will say that a finite automaton A is zero-
reversible if A and Ar are deterministic. Given a 
finite automaton A=(Q,Σ,δ,I,F) and a state q ∈ Q, 
we will say that the string x is a k-follower of q if 
and only if |x|=k and δ(q,x)≠∅. We will say that a 
finite automaton A=(Q,Σ,δ,I,F) is deterministic with 
lookahead k if and only if for any pair of distinct 
states q and p, if q,p ∈ I or q,p ∈ δ(s,a) then there is 
no string that is a k-follower of both q and p. We 
will say that a finite automaton A is k-reversible if 
and only if A is deterministic and Ar is deterministic 
with lookahead k. We will say that a language is k-
reversible if there exist a minimum DFA with 
respect to the number of states which is k-reversible. 

The class of k-reversible languages will be denoted 
by k-REV. The following inclusion holds k-REV ⊂ 
(k+1)-REV. Finally the class of reversible languages, 
REV, will denote the class of languages that are k-
reversible for any k ≥ 0. 

3.  Watson-Crick finite automata 
Given an alphabet Σ = {a1, …, an}, we will use 

the symmetric (and injective) relation of 
complementarity ρ ⊆ Σ×Σ. For any string x ∈Σ*, we 
will denote by ρ(x) the string obtained by 
substituting the symbol a in x by the symbol b such 
that (a,b) ∈ ρ (remember that ρ is injective) with 
ρ(λ)=λ. 

Given an alphabet Σ, a sticker over Σ will be the 
pair (x,y) such that x = x1vx2,  y = y1wy2 with x,y ∈ 
Σ* and ρ(v)=w. The sticker (x,y) will be denoted by 









y
x

. A sticker 







y
x

will be a complete and 

complementary molecule if |x|=|y| and ρ(x)=y. A 

complementary and complete molecule 







y
x

will be 

denoted as 







y
x

. Obviously, any sticker 







y
x

or 

molecule 







y
x

can be represented by x#yr where # ∉ 

Σ. Here, we will use x#yr instead of x#y due to the 
grammar construction that we will propose in the 
following. Furthermore, inspired by DNA structure 
x#yr represents the upper and lower nucleotide 
strings within the same direction 3’–5’ (or 5’-3’). 

 Formally, an arbitrary WK finite automaton is 
defined by the tuple M=(V,ρ,Q,s0,F,δ), where Q and 
V are disjoint alphabets (states and symbols), ρ is a 
symmetric (and injective) relation of 
complementarity between symbols of V, s0 is the 
initial state, F ⊆ Q is a set of final states and 

δ:Q× 







*
*

V
V

 →P(Q). 

The language of complete and complementary 
molecules accepted by M will be denoted by the set 
Lm(M), while the upper strand language accepted by 
M will be denoted by Lu(M) and defined as the set of 
strings x such that M enters into a final state after 

analyzing the molecule 







y
x

. 

4.  A Representation Theorem 
Now, given any WKFA M, we will introduce a 
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representation theorem for the languages Lm(M) and 
Lu(M). First, remember that any double string  









y
x

can be represented by the string x#yr. Then, the 

following result holds 

Theorem 1. (Sempere,[7]) Let M=(V,ρ,Q,s0,F,δ) 
be an arbitrary WK finite automaton. Then there 
exists a linear language L1 and an even linear 
language L2 such that Lm(M)=L1∩L2. 

The construction for L1 and L2 proposed in the 
theorem is defined as follows. First, the grammar 
G1=(N,V∪{#},P,s0) where N = Q, s0 is the axiom of 
the grammar and P is defined as 

1. If q ∈ F then q → # ∈ P. 

2. If p ∈ δ(q, 








2

1

x
x

) then q →x1 p x2
r ∈ P. 

The language L2 is defined by the grammar 
G2=({S}, V∪{#}, P, S) where P is defined as follows 

1. S → # ∈ P. 

2. For every pair of symbols a,b ∈ V, such that  

  (a,b) ∈ ρ, S → a S b ∈ P. 

It can be easily proved that L(G2) = {x1#x2
r ∈  

V*#V* : |x1|=|x2| and ρ(x1)=x2}. That is, L2 can be 
established as the set of complete and 

complementary molecules 







y
x

in the form x#yr. 

From L1 and L2 it is clear that L1∩L2 is the set of 
complete and complementary molecules accepted by 
M in the form x#yr. 

In order to characterize the upper strand 
language we will provide the following result 

Corollary 1. (Sempere,[7]) Let M=(V,ρ,Q,s0,F,δ) 
be an arbitrary WK finite automaton. Then Lu(M) 
can be expressed as g(h-1(L1∩L2)∩R) with L1 being 
a linear language, L2 an even linear language, R a 
regular language and g and h homomorphisms. 

III. REGULAR REVERSIBILITY IN 
WATSON-CRICK FINITE AUTOMATA  

In this section, we will introduce regular 
reversibility in the upper or lower strand, and in the 
double strand of the WKFA model. Given that the 
languages accepted by arbitrary WKFA can be 
represented by linear and even linear languages, we 
will introduce two reductions from these language 
classes to the class REG. 

The first transformation, the so called σ operator, 

was first introduced in [8] and it was applied for the 
definition of local testable even linear languages in 
[9]. It is defined inductively as follows: 
σ:Σ*→(Σ×Σ)* (Σ∪{λ}) with 

1. σ(λ)=λ. 

2. (∀ a ∈ Σ) σ(a) = a. 

3. (∀ a,b ∈ Σ) (∀ x ∈ Σ*) σ(axb) = [ab]σ(x). 

The operation σ is applied over languages as 
σ(L) = {σ(x) : x ∈ L }. The inverse transformation 
σ-1 can be easily deduced from σ. It has been proved 
in [8] that for every even linear language L, σ(L) is 
regular. 

The second transformation is a grammatical 
construction that transforms every linear grammar 
into an even linear one. It is defined as follows. 

Let G1=(N,Σ,P,S) be a linear grammar. Then 
G2=(N,Σ∪{@},P’,S) is an even linear grammar 
where the productions of P’ are defined as follows 

1. If A→w ∈ P then A→w ∈ P’. 

2. If A→uBv ∈ P with |u|=|v|, then A→uBv ∈P’. 

3. If A→uBv ∈ P with |u| < |v|, then  

  A→u @|v|-|u|Bv ∈ P’. 

4. If A→uBv ∈ P with |u| > |v|, then  

  A→u Bv @|u|-|v| ∈ P’. 

The last grammar is an even linear one and it can 
be easily proved that g(L(G2)) = L(G1) where g is a 
homomorphism such that g(@)=λ and g(a)=a for 
every a ∈ Σ. 

1.  Regular reversibility in the double strand 
We will take the representation proposed in 

theorem 1. So, any molecule 







y
x

can be represented 

by x#yr. Let us take G1 as the linear grammar 
proposed in the theorem and let us take G2 as the 
transformed even linear grammar corresponding to 
G1. Obviously, for any string x#yr of L(G1) we obtain 
a string u#v in L(G2) such that g(u)#g(v)=x#yr, 
where g is the homomorphism defined before. 

Now, we can work with G2 and we apply the 
transformation σ over L(G2). Observe that σ(L(G2)) 
is regular. 

Example 1. Let M = (V,ρ,Q,s0,F,δ) be the 
WKFA defined by the following transitions 

δ(q0, 







λ
a

) = {qa} δ(qa, 







λ
a

) = {qa} 
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δ(qa, 







a
b

) = {qb} δ(qb, 







a
b

) = {qb} 

δ(qb, 







b
c

) = {qc} δ(qc, 







b
c

) = {qc} 

δ(qc, 







c
λ

) = {qf} δ(qf, 







c
λ

) = {qf}  

Let us take qf as the final state, q0 as the initial 
state and the complementarity relation ρ = {(a,a), 
(b,b),(c,c)}. Then, every complete and 
complementary molecule accepted by M takes the 

form 







nnn

nnn

cba
cba

with n ≥ 1. 

Now, the representation linear grammar GM, 
according to M is defined by the following 
productions (take q0 as the axiom) 

q0→ a qa  qa →a qa | b qb a 

qb→ b qb a | c qc b qc → c qc b | qf c 

qf→ qf c | # 

The corresponding even linear grammar is the 
following 

q0 → a qa @  qa → a qa @ | b qb a 

qb → b qb a | c qc b qc → c qc b | @ qf c 

qf → @ qf c | # 

Finally, we can provide the following right linear 
grammar to obtain the transformation σ over the last 
grammar 

q0 → [a@] qa  qa → [a@] qa | [ba] qb  

qb → [ba] qb | [cb] qc  qc → [cb] qc | [@c] qf 

qf → [@c] qf | # 

Observe that the last grammar generates the 
language defined as  

L ={[a@]n [ba]m [cb]p [@c]q # : n,m,p,q ≥ 1}.  

Then, if we take the morphism g with g(@) = λ  
and g(d) = d for every d ∈ { a,b,c,# } we can obtain 
g(σ-1(L)) = { anbmcp#cqbpam : n,m,p,q ≥ 1 } which, 
together with the complementary relation ρ, 
corresponds to the language accepted by M. 

So, the definition of regular reversibility will be 
applied over the regular language obtained by the 
result σ(L(GM)) for any WKFA M. Observe that 
every transformed language in k-REV has a 
corresponding regular reversible language defined 
by the transitions of the WKFA. 

2.  Regular reversibility in the upper (lower) strand 

Now, we will deal only with the upper (lower) 
strand. Observe that, the definition of the WKFA 
transitions can be transformed into FA transitions by 
taking the upper or lower strand (i.e., the transition p 

∈ δ(q, 







y
x

) implies that pu ∈δu(q,x) and pl ∈ 

δl(q,y)). So, for every WKFA we can obtain two 
different finite automata which control the 
transitions in the upper and lower strands. Here, we 
will work with simple WKFA [1]. We will say that a 

WKFA is simple if for every transition δ(q, 







y
x

), 

x=λ or y=λ. It has been proved that simple WKFA 
are normal forms for arbitrary WKFA. That is, for 
every arbitrary WKFA there exists an equivalent 
simple WKFA. Furthermore, we can work with the 
so called 1-limited WKFA which are simple WKFA 
where every transition is performed by analyzing 
only one symbol every time. Now, we will obtain 
finite automata from arbitrary 1-limited WKFA 
through the following construction. Let 
M=(V,ρ,Q,s,F,δ) be an arbitrary 1-limited WKFA. 
Then, we can define the finite automaton Au = (Q, V, 
δu, s, F), where δu is defined as follows 

1. p ∈ δu(q,a) if and only if p ∈ δ(q, 







λ
a

). 

2. p ∈ δu(q,λ) if and only if p ∈ δ(q, 







a
λ

).  

We can define the finite automaton Al = (Q, V, δl, 
s, F) where δl is defined as follows 

1. p ∈δl(q,a) if and only if p ∈ δ(q, 







a
λ

).  

2. p ∈ δl(q,λ) if and only if p ∈ δ(q, 







λ
a

). 

Example 2. Let us take the WKFA of example 1. 
Then Au is defined by the following transitions 

δu(q0,a) = { qa } δu(qa,a) = { qa } 

δu(qa,b) = { qbb } δu(qbb,λ) = {qb } 

δu(qb,b ) = { qbbb } δu(qbbb,λ) = { qb } 

δu(qb,c) = { qcc } δu(qcc,λ) = { qc } 

δu(qc,c) = { qccc } δu(qccc,λ) = { qc } 

δu(qc,λ) = {qf } 

In the previous definitions, the states qbb, qbbb, qcc 
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and qccc have been introduced in order to obtain an 
equivalent 1-limited WKFA from the one proposed 
initially. In this case L(Au) = a+b+c+. The same holds 
for L(Al). 

Observe that, in both automata Au and Al, the 
empty transitions correspond to the case that the 
WKFA is working in the other strand, so the finite 
automaton ignores all the movements in that way. 

Now, the definitions of regular reversibility 
come from a natural way of looking up to the FA Au 
and Al. We will say that a 1-limited WKFA is upper 
(lower) reversible if the language accepted by Au 
(resp. Al) is reversible. Observe that this definition 
implies the existence of different classes of 
languages accepted by WKFA which have regular 
reversibility. These classes are defined as follows 

1. The class k-REVu of languages accepted by 1-
limited WKFA which have k-reversibility in the 
upper strand. 

2. The class k-REVl of languages accepted by 1-
limited WKFA which have k-reversibility in the 
lower strand. 

We can make a step further the definition of a 
new kind of regular reversibility in every strand by 
introducing a combination of classes considered up 
to now in an isolated way. Let us take the finite 
automata Al and Au proposed before. Observe that if 
L(Al) is in j-REV, then L(Al) belongs to k-REV for 
every j ≤ k. The same holds for Au. So, we can 
combine different language classes in the upper and 
the lower strand and they define new classes (k,j)-
REV of languages accepted by 1-limited WKFA 
which have k-reversibility in the upper strand and j-
reversibility in the lower strand. 

V. CONCLUSION 
In this work we have introduced regular 

reversibility in Watson-Crick finite automata. Due to 
the representation theorem that we have introduced 
in section II, and the reduction to regular languages, 
we can introduce different characteristic features in 
WKFA by translating them from regular languages. 
This allows the inference of some restricted models 
of WKFA in order to apply them to practical 
approaches. In addition, it defines new language 
classes accepted by WKFA which will be explored 
in the near future. 
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